Microsoft タイム シリーズ アルゴリズムでは、時系列の分析に基づいて月次売上のパターンや年間収益のパターンなどのパターンを割り出すために、時間関連のデータが分析されます。
Microsoft クラスタリング アルゴリズムでは 複数の属性値の多次元表記でデータの自然なグループが検索されます このアルゴリズムは データの中から一般的なグループを見つけ出す際に便利です
Microsoft シーケンス クラスタ アルゴリズムでは シーケンス分析とクラスタリングという 2 つの異なるデータ マイニング技法が組み合わせられます このアルゴリズムは シーケンスに関連するパターンを分析し クラスタ化します
Microsoft シーケンス クラスタ アルゴリズムは シーケンス分析とクラスタリングを組み合わせたアルゴリズムです このアルゴリズムでは シーケンス内で同じ順序で発生しているイベントをクラスタとみなします このクラスタを使用して 既知の特徴を基に ...
Microsoft タイム シリーズ アルゴリズムでは ARIMA 分析とデシジョン ツリーに基づく線形回帰を組み合わせて使用して 月ごとの売上データや年間の収益など 時刻と関連のあるデータを分析します 割り出されたパターンを使用して 今後の時間ステップの値を予測できます ...
Microsoft タイム シリーズ アルゴリズムでは 時系列の分析に基づいて月次売上のパターンや年間収益のパターンなどのパターンを割り出すために 時間関連のデータが分析されます
Microsoft デシジョン ツリー アルゴリズムは 予測モデリングに有効な分類アルゴリズムです このアルゴリズムは 不連続な属性と連続的な属性の両方の予測をサポートしています
Microsoft ニューラル ネットワーク アルゴリズムでは 複数層のネットワークのパラメータを最適化して複数の属性を予測するグラデーション手法を使用します これは 不連続な属性の分類のほか 連続属性の回帰にも使用できます
Microsoft ロジスティック回帰アルゴリズムは 回帰モデリングに対して適切に機能する回帰アルゴリズムです このアルゴリズムは 非表示の層を取り除くことによって得られる Microsoft ニューラル ネットワーク アルゴリズムの特別な構成です ...
Microsoft 分散トランザクション コーディネータ (MS DTC) から 準備されたトランザクションをコミットできません リソース マネージャ (RM) の復旧を開始するために サーバーをシャットダウンしています RM 復旧時に 状態が不明なトランザクションの結果がトランザクション ...